A generalization of Gottlieb polynomials in several variables
نویسنده
چکیده
Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the q-analogue of Gottlieb polynomials. In this sequel, by modifying Khan and Akhlaq’s method, Choi presented a generalization of the Gottlieb polynomials in m variables to present two generating functions of the generalized Gottlieb polynomials φn (·). Here, we show that many formulas regarding the Gottlieb polynomials in m variables and their reducible cases can easily be obtained by using one of two generating functions for Choi’s generalization of the Gottlieb polynomials in m variables expressed in terms of welldeveloped Lauricella series F (m) D [·].
منابع مشابه
Some compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملHigher rank numerical ranges of rectangular matrix polynomials
In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...
متن کاملMonodromy of Dual Invertible Polynomials
A generalization of Arnold’s strange duality to invertible polynomials in three variables by the first author and A. Takahashi includes the following relation. For some invertible polynomials f the Saito dual of the reduced monodromy zeta function of f coincides with a formal “root” of the reduced monodromy zeta function of its Berglund– Hübsch transpose f . Here we give a geometric interpretat...
متن کاملBernstein's polynomials for convex functions and related results
In this paper we establish several polynomials similar to Bernstein's polynomials and several refinements of Hermite-Hadamard inequality for convex functions.
متن کاملFactorization of non-negative operator valued trigonometric polynomials in two variables
Schur complements provide a convenient tool for proving the operator valued version of the classical (single variable) Fejér-Riesz problem. It also enables the factorization of multivariable trigonometric polynomials which are strictly positive. A result of Scheiderer implies that in two variables, nonnegative scalar valued trigonometric polynomials have sums of squares decompositions, Using a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Math. Lett.
دوره 25 شماره
صفحات -
تاریخ انتشار 2012